Skip to content

Installation

This guide will help you install Dango on macOS, Linux, or Windows.

Prerequisites

Python 3.10-3.12 (Required)

Recommended Version

Python 3.11 or 3.12 are recommended for best performance and compatibility.

Check if you have Python:

# Try these commands in order:
python3.12 --version  # Check for Python 3.12
python3.11 --version  # Check for Python 3.11
python3.10 --version  # Check for Python 3.10

# If any show "3.10" or higher, you're good!
python --version     # Should show 3.10 or higher

Install Python if needed:

  1. Install Homebrew (if you don't have it):

    /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
    

  2. Install Python:

    brew install python@3.11
    

  3. Verify:

    python3.11 --version
    

sudo apt update
sudo apt install python3.11 python3.11-venv python3-pip
sudo dnf install python3.11
  • Download from python.org
  • OR install from Microsoft Store (search "Python 3.11")
  • Important: Check "Add Python to PATH" during installation

Docker Desktop (Required)

Required For

Docker is required for Metabase dashboards, Web UI, and dbt docs visualization.

Install Docker Desktop:

  1. Download from docs.docker.com/desktop
  2. Install for your platform (macOS, Linux, or Windows)
  3. Start Docker Desktop
  4. Verify installation:
docker --version

Disk Space Requirements

Component Space Required
Docker Desktop ~4.5GB
Python packages ~400MB
Dango platform ~100MB
Total Installation ~5GB

Data Storage (varies by data volume):

  • Small datasets (< 100K rows): < 100MB
  • Medium datasets (100K - 1M rows): 100MB - 1GB
  • Large datasets (> 1M rows): 1GB+

Recommendation

Have at least 10GB free space before installing.

Supported Platforms

  • macOS (Intel and Apple Silicon)
  • Linux (Ubuntu 20.04+, Debian 11+, Fedora 35+)
  • Windows 10/11

Verify Prerequisites

Before installing, verify you have everything:

# Check Python (any of these should work):
python3.12 --version  # 3.12.x ✓
python3.11 --version  # 3.11.x ✓
python3.10 --version  # 3.10.x ✓

# Check Docker (required):
docker --version

# Check disk space:
df -h .
python --version     # Should show 3.10 or higher
docker --version

Installation Methods

The bootstrap installer creates a project directory, sets up a virtual environment, and installs Dango automatically.

curl -sSL https://raw.githubusercontent.com/getdango/dango/main/install.sh | bash
irm https://raw.githubusercontent.com/getdango/dango/main/install.ps1 | iex

The installer will:

  1. Create a project directory
  2. Set up an isolated virtual environment
  3. Install Dango from PyPI
  4. Initialize your project interactively

Security-Conscious Installation

If you prefer to inspect the installer first:

# Download the installer
curl -sSL https://raw.githubusercontent.com/getdango/dango/main/install.sh -o install.sh

# Review what it does
cat install.sh

# Run when ready
bash install.sh
# Download the installer
Invoke-WebRequest -Uri https://raw.githubusercontent.com/getdango/dango/main/install.ps1 -OutFile install.ps1

# Review what it does
Get-Content install.ps1

# Run when ready
.\install.ps1

View the installer source: install.sh | install.ps1

Manual Installation

If you prefer to set things up yourself:

# Create project directory
mkdir my-analytics
cd my-analytics

# Create virtual environment
python3 -m venv venv
source venv/bin/activate

# Install Dango
pip install getdango

# Initialize project
dango init
# Create project directory
New-Item -ItemType Directory -Path my-analytics
Set-Location my-analytics

# Create virtual environment
python -m venv venv
.\venv\Scripts\Activate.ps1

# Install Dango
pip install getdango

# Initialize project
dango init

Verify Installation

After installation, verify Dango is working:

# Activate virtual environment (if not already active)
cd my-analytics
source venv/bin/activate

# Check version
dango --version
# Should show: dango, version X.X.X

# Check installation
dango validate
# Activate virtual environment (if not already active)
cd my-analytics
.\venv\Scripts\Activate.ps1

# Check version
dango --version
# Should show: dango, version X.X.X

# Check installation
dango validate

Upgrading Dango

If you installed with the bootstrap script:

cd your-project
curl -sSL https://raw.githubusercontent.com/getdango/dango/main/install.sh | bash
# Select [u] to upgrade when prompted

Manual Upgrade

cd your-project
source venv/bin/activate

# Upgrade to latest version
pip install --upgrade getdango

# Verify new version
dango --version
cd your-project
.\venv\Scripts\Activate.ps1

# Upgrade to latest version
pip install --upgrade getdango

# Verify new version
dango --version

After Upgrading

# Validate project still works
dango validate

# Restart the platform
dango stop
dango start

Breaking Changes

Check CHANGELOG.md for breaking changes between versions.


Uninstall

Virtual Environment Installation

If you installed in a virtual environment (recommended), simply delete the project directory:

rm -rf my-analytics/
Remove-Item -Recurse -Force my-analytics

That's it! Everything (venv, data, config) is contained in the project directory.

Global Installation

If you installed globally:

Step 1: Find which Python has Dango

# Check each Python version
python3.11 -m pip list | grep getdango
python3.10 -m pip list | grep getdango
python3 -m pip list | grep getdango

# Or find the command location
which dango
# Example output: /Users/you/Library/Python/3.11/bin/dango
# This means use python3.11
# Check Python versions
python -m pip list | findstr getdango
py -3.11 -m pip list | findstr getdango

Step 2: Uninstall Dango

# Use the Python version that has it (e.g., python3.11)
python3.11 -m pip uninstall getdango
python -m pip uninstall getdango

Remove Docker Containers (Optional)

If you're done with Dango entirely:

# List running containers
docker ps

# Stop Metabase container
docker stop <metabase-container-id>

# Remove Metabase image (saves disk space)
docker rmi metabase/metabase

Next Steps

Now that Dango is installed:

  1. Quick Start - Get your first pipeline running
  2. Troubleshooting - If you encounter issues
  3. Core Concepts - Learn about Dango's architecture

Need Help?

If installation fails:

  1. Check the Troubleshooting guide
  2. Search GitHub Issues
  3. Open a new issue with your error message